Gleitender Durchschnitt Vorhersage Einleitung. Wie Sie vermutlich schauen, betrachten wir einige der primitivsten Ansätze zur Prognose. Aber hoffentlich sind diese zumindest eine lohnende Einführung in einige der Rechenprobleme im Zusammenhang mit der Umsetzung von Prognosen in Tabellenkalkulationen. In diesem Sinne werden wir von Anfang an beginnen und beginnen mit Moving Average Prognosen zu arbeiten. Gleitende durchschnittliche Prognosen. Jeder ist vertraut mit gleitenden durchschnittlichen Prognosen, unabhängig davon, ob sie glauben, sie sind. Alle Studenten tun sie die ganze Zeit. Denken Sie an Ihre Testergebnisse in einem Kurs, in dem Sie vier Tests während des Semesters haben werden. Angenommen, Sie haben eine 85 auf Ihrem ersten Test. Was würden Sie vorhersagen, für Ihre zweite Test-Score Was glauben Sie, Ihr Lehrer würde für Ihre nächste Test-Punkt vorhersagen Was denken Sie, Ihre Freunde könnten für Ihre nächste Test-Punkt vorherzusagen Was denken Sie, Ihre Eltern könnten für Ihre nächste Test-Score Unabhängig davon vorhersagen Alle die blabbing Sie tun könnten, um Ihre Freunde und Eltern, sie und Ihr Lehrer sind sehr wahrscheinlich zu erwarten, dass Sie etwas im Bereich der 85 erhalten Sie gerade bekommen. Nun, da Sie Ihren Freunden trotz Ihrer Eigenwerbung lässt vermuten, Sie selbst überschätzen und Abbildung Sie weniger für den zweiten Test studieren können und so erhalten Sie einen 73. Nun, was all die betroffen sind und unbeteiligt gehen Erwarten Sie erhalten auf Ihrem dritten Test Es gibt zwei sehr wahrscheinlich Ansätze, damit sie eine Schätzung unabhängig davon entwickeln, ob sie sie mit Ihnen teilen. Sie können zu sich selbst sagen, dieser Kerl ist immer bläst Rauch über seine smarts. Hes gehend, ein anderes 73 zu erhalten, wenn hes glücklich. Vielleicht werden versuchen, die Eltern stärker unterstützen und sagen, quotWell zu sein, haben Sie ein so weit gekommen 85 und 73, so sollten Sie vielleicht Abbildung auf immer über eine (85 73) 2 79. Ich weiß nicht, vielleicht, wenn Sie weniger Party tat Und werent wedelte das Wiesel ganz über dem Platz und wenn Sie anfingen, viel mehr zu studieren, konnten Sie einen höheren score. quot erhalten. Beide dieser Schätzungen sind wirklich gleitende durchschnittliche Prognosen. Der erste verwendet nur Ihre jüngste Punktzahl, um Ihre zukünftige Performance zu prognostizieren. Dies wird als gleitende Durchschnittsprognose mit einer Datenperiode bezeichnet. Die zweite ist auch eine gleitende durchschnittliche Prognose, aber mit zwei Perioden von Daten. Nehmen wir an, sauer du all diese Leute eine Art haben auf Ihrem großen Geist Zerschlagung und Sie entscheiden sich für Ihre eigenen Gründe auch im dritten Test zu machen und eine höhere Punktzahl vor Ihrem quotalliesquot zu setzen. Sie nehmen den Test und Ihre Gäste ist eigentlich ein 89 Jeder, einschließlich selbst, ist beeindruckt. So jetzt haben Sie die abschließende Prüfung des Semesters herauf und wie üblich spüren Sie die Notwendigkeit, alle in die Vorhersagen zu machen, wie youll auf dem letzten Test tun. Nun, hoffentlich sehen Sie das Muster. Nun, hoffentlich können Sie das Muster sehen. Was glauben Sie, ist die genaueste Pfeife, während wir arbeiten. Nun kehren wir zu unserer neuen Reinigungsfirma zurück, die von Ihrer entfremdeten Halbschwester namens Whistle While We Work begonnen wurde. Sie haben einige vergangene Verkaufsdaten, die durch den folgenden Abschnitt aus einer Kalkulationstabelle dargestellt werden. Zuerst präsentieren wir die Daten für eine dreidimensionale gleitende Durchschnittsprognose. Der Eintrag für Zelle C6 sollte jetzt sein Sie können diese Zellformel auf die anderen Zellen C7 bis C11 kopieren. Beachten Sie, wie der Durchschnitt bewegt sich über die jüngsten historischen Daten, sondern verwendet genau die drei letzten Perioden zur Verfügung für jede Vorhersage. Sie sollten auch bemerken, dass wir nicht wirklich brauchen, um die Vorhersagen für die vergangenen Perioden zu machen, um unsere jüngste Vorhersage zu entwickeln. Dies ist definitiv anders als das exponentielle Glättungsmodell. Ive eingeschlossen das quotpast predictionsquot, weil wir sie auf der folgenden Webseite verwenden, um Vorhersagegültigkeit zu messen. Nun möchte ich die analogen Ergebnisse für eine zwei-Periode gleitenden Durchschnitt Prognose zu präsentieren. Der Eintrag für Zelle C5 sollte jetzt sein Sie können diese Zellformel auf die anderen Zellen C6 bis C11 kopieren. Beachten Sie, wie jetzt nur die beiden letzten Stücke der historischen Daten für jede Vorhersage verwendet werden. Wieder habe ich die quotpast Vorhersagequot für illustrative Zwecke und für die spätere Verwendung in der Prognose Validierung enthalten. Einige andere Dinge, die wichtig zu beachten sind. Für eine m-Periode gleitende Durchschnittsprognose werden nur die m neuesten Datenwerte verwendet, um die Vorhersage durchzuführen. Nichts anderes ist notwendig. Für eine m-Periode gleitende durchschnittliche Prognose, wenn Sie Quotpast Vorhersagequot, beachten Sie, dass die erste Vorhersage tritt im Zeitraum m 1 auf. Diese beiden Fragen werden sehr wichtig sein, wenn wir unseren Code entwickeln. Entwicklung der Moving Average Funktion. Nun müssen wir den Code für die gleitende Durchschnittsprognose entwickeln, die flexibler genutzt werden kann. Der Code folgt. Beachten Sie, dass die Eingaben für die Anzahl der Perioden sind, die Sie in der Prognose und dem Array der historischen Werte verwenden möchten. Sie können es in beliebiger Arbeitsmappe speichern. Funktion MovingAverage (Historische, NumberOfPeriods) As Single Deklarieren und Variablen Dim Artikel As Variant Dim Zähler As Integer Dim Accumulation As Single Dim HistoricalSize Initialisierung As Integer initialisieren Variablen Zähler 1 Accumulation 0 Bestimmung der Größe der historischen Array HistoricalSize Historical. Count für Zähler 1 Um NumberOfPeriods thesaurierend die entsprechende Anzahl von jüngsten zuvor Werte Accumulation Accumulation Historische beobachtet (HistoricalSize - NumberOfPeriods Counter) MovingAverage Accumulation NumberOfPeriods der Code wird in der Klasse erklärt. Sie möchten die Funktion in der Tabellenkalkulation positionieren, so dass das Ergebnis der Berechnung angezeigt wird, wo es die folgenden. Mit der FORECAST-Funktion in Excel (und Open Office Calc) Kopie Copyright. Inhalt auf InventoryOps ist urheberrechtlich geschützt und steht nicht für die Wiederveröffentlichung zur Verfügung. Lassen Sie mich beginnen, indem Sie sagen, dass Excels Prognose-Funktion ist nicht ein vollständiges Inventar Vorhersage-System. Die Vorhersage in der Bestandsverwaltung umfasst im Allgemeinen das Entfernen von Lärm aus der Nachfrage, dann die Berechnung und Integration von Trends, Saisonalität und Ereignisse. Die Prognose-Funktion wird nicht alle diese Dinge für Sie tun (technisch könnte es, aber es gibt bessere Möglichkeiten, einige davon zu erreichen). Aber es ist eine nette kleine Funktion, die einfach zu bedienen ist, und es kann sicherlich ein Teil Ihres Prognosesystems sein. Laut Microsoft Help zur Prognosefunktion. Die Funktion FORECAST (x, knownys, knownxs) gibt den vorhergesagten Wert der abhängigen Variablen (in den Daten durch bekannte) für den spezifischen Wert x der unabhängigen Variablen (dargestellt in den Daten durch bekanntexx) zurück (Kleinste Quadrate) lineare Regression, um y-Werte aus x-Werten vorherzusagen. Also, was genau bedeutet das Lineare Regression ist eine Form der Regressionsanalyse und kann verwendet werden, um eine mathematische Beziehung zwischen zwei (oder mehr) Sätze von Daten zu berechnen. In der Prognose würden Sie dies verwenden, wenn Sie dachten, dass ein Satz von Daten verwendet werden könnte, um einen anderen Satz von Daten vorherzusagen. Zum Beispiel, wenn Sie Baubedarf verkauft, können Sie feststellen, dass Änderungen der Zinsen verwendet werden können, um den Verkauf Ihrer Produkte vorauszusagen. Dies ist ein klassisches Beispiel für die Verwendung von Regression, um eine Beziehung zwischen einer externen Variablen (Zinssätze) und einer internen Variable (Ihren Verkäufen) zu berechnen. Wie wir später noch sehen werden, können Sie auch Regression verwenden, um eine Beziehung innerhalb desselben Datensatzes zu berechnen. Ein typischer Ansatz zur Regressionsanalyse beinhaltet die Verwendung von Regression, um die mathematische Beziehung zu bestimmen, aber auch, um Ihnen eine Vorstellung davon zu vermitteln, wie gültig diese Beziehung ist (das ist der Analyseteil). Die Forecast-Funktion überspringt die Analyse und berechnet einfach eine Beziehung und wendet sie automatisch auf Ihre Ausgabe an. Dies macht die Dinge für den Benutzer einfacher, aber es geht davon aus, dass Ihre Beziehung gültig ist. Im Wesentlichen verwendet die Forecast-Funktion eine lineare Regression, um einen Wert basierend auf einer Beziehung zwischen zwei Datensätzen vorherzusagen. Hier einige Beispiele. In Abbildung 1A haben wir eine Kalkulationstabelle, die den durchschnittlichen Zinssatz in den letzten 4 Jahren und den Absatz im gleichen Zeitraum von 4 Jahren umfasst. Wir zeigen auch einen voraussichtlichen Zinssatz für das 5. Jahr. Wir sehen in dem Beispiel, dass unsere Verkaufszahlen steigen, wenn die Zinsen sinken und sinken, wenn die Zinsen steigen. Wenn wir das Beispiel betrachten, können wir vermutlich vermuten, dass unsere Verkäufe für Jahr 5 irgendwo zwischen 5.000 und 6.000 liegen würden, basierend auf der beobachteten Beziehung zwischen Zinssätzen und Verkäufen in den vorherigen Perioden. Wir können die Prognosefunktion verwenden, um diese Beziehung präziser zu quantifizieren und sie auf das 5. Jahr anzuwenden. In Abbildung 1B sehen Sie, wie die Prognosefunktion angewendet wird. In diesem Fall ist die Formel in Zelle F4 FORECAST (F2, B3: E3, B2: E2). Was wir innerhalb der Klammer haben, wird als Argument bezeichnet. Ein Argument ist wirklich nur ein Mittel zur Übergabe von Parametern an die verwendete Funktion (in diesem Fall die Prognosefunktion). Jeder Parameter wird durch ein Komma getrennt. Damit die Forecast-Funktion funktioniert, muss sie wissen, welchen Wert wir verwenden, um unsere Produktion vorherzusagen (unsere Verkäufe des Jahres 5). In unserem Fall ist der Parameter (unser Jahr-5-Zinssatz) in Zelle F2, also ist das erste Element unseres Arguments F2. Als Nächstes muss er wissen, wo er die vorhandenen Werte finden kann, die er verwenden wird, um die Beziehung zu bestimmen, die auf F2 anzuwenden ist. Zuerst müssen wir die Zellen eingeben, die die Werte unserer abhängigen Variablen darstellen. In unserem Fall würde dies unsere Einheiten in den letzten 4 Jahren verkauft werden, daher geben wir B3: E3. Dann müssen wir die Zellen eingeben, die die Werte unserer Prädiktorvariablen repräsentieren. In unserem Fall sind dies die Zinsen der letzten 4 Jahre, daher geben wir B2: E2). Die Prognosefunktion kann nun die in den Jahren 1 bis 4 verkauften Einheiten mit den Zinssätzen in den gleichen Jahren vergleichen und dann diese Beziehung zu unserem vorhergesagten Jahr 5-Zinssatz anwenden, um unsere prognostizierten Umsätze für das Jahr 5 von 5,654 Einheiten zu erhalten. Im vorherigen Beispiel können wir die Graphen betrachten, um zu helfen, die Beziehung zu visualisieren. Auf den ersten Blick kann es nicht so offensichtlich aussehen, weil wir eine umgekehrte Beziehung haben (Verkäufe gehen oben, während Zinsen nach unten gehen), aber wenn Sie geistig eine der Diagramme gedreht würden, würden Sie eine sehr klare Beziehung sehen. Das ist eine der coolen Dinge über die Prognose-Funktion (und Regressionsanalyse). Es kann leicht mit einer umgekehrten Beziehung. Kopie des Urheberrechts. Inhalt auf InventoryOps ist urheberrechtlich geschützt und steht nicht für die Wiederveröffentlichung zur Verfügung. Nun sehen wir uns ein anderes Beispiel an. In Abbildung 2A sehen wir einen neuen Datensatz. In diesem Beispiel stiegen die Zinssätze in den vergangenen 4 Jahren nach oben und unten, der Absatz zeigte jedoch einen konstanten Aufwärtstrend. Während es möglich ist, dass die Zinsen in diesem Beispiel einige Auswirkungen auf unsere Umsätze hatten, ist es offensichtlich, dass hier wesentlich mehr Faktoren zu berücksichtigen sind. Durch die Verwendung unserer Prognose-Funktion mit diesen Daten, geben wir eine Prognose von 7.118 Einheiten für das Jahr 5 zurück. Ich denke, die meisten von uns würden auf unsere Umsatzentwicklung zu schauen und zuzustimmen, seine weitaus wahrscheinlicher unsere Verkäufe für Jahr 5 wäre 9.000 Einheiten. Wie ich bereits erwähnt habe, geht die Prognose-Funktion davon aus, dass die Beziehung gültig ist, daher produziert sie eine Ausgabe, die auf der bestmöglichen Größe basiert, die sie aus den Daten ergibt, die sie erhalten. Mit anderen Worten, wenn wir sagen, es gibt eine Beziehung, es glaubt uns und produziert die Ausgabe entsprechend, ohne uns eine Fehlermeldung oder ein Signal, das implizieren würde die Beziehung ist sehr schlecht. Also, seien Sie vorsichtig, was Sie verlangen. Die bisherigen Beispiele deckten die klassische Anwendung der Regression auf die Prognose. Während all dies klingt ziemlich glatt, ist diese klassische Anwendung der Regression nicht so nützlich, wie Sie vielleicht denken (Sie können überprüfen, mein Buch für weitere Informationen über Regression und warum es möglicherweise nicht eine gute Wahl für Ihre Prognose braucht werden). Aber jetzt können Sie mit der Forecast-Funktion einfach zu identifizieren Trend innerhalb eines bestimmten Satz von Daten. Beginnen wir mit der Betrachtung von Fig. 3A. Hier haben wir Nachfrage mit einem sehr offensichtlichen Trend. Die meisten von uns sollten in der Lage, diese Daten betrachten und sich wohl fühlen, vorauszusagen, dass die Nachfrage in Periode 7 wird wahrscheinlich 60 Einheiten sein. Wenn Sie diese Daten jedoch über die für die Bestandsführung verwendeten typischen Prognoserechnungen laufen ließen, können Sie überrascht sein, wie viele dieser Berechnungen für den Trend verantwortlich sind. Da die Prognosefunktion es erfordert, eine abhängige Variable und eine Prädiktorvariable einzugeben, wie gehen wir über die Verwendung der Prognosefunktion aus, wenn wir nur einen Datensatz haben Nun, während es technisch wahr ist, dass wir einen einzigen Datensatz haben (unsere Haben wir tatsächlich eine Beziehung, die innerhalb dieses Datensatzes vor sich geht. In diesem Fall ist unsere Beziehung zeitlich begrenzt. Daher können wir jede Periodenanforderung als Prädiktorvariable für die folgenden Periodennachfragen verwenden. So müssen wir nur sagen, die Prognose-Funktion, um die Nachfrage in den Perioden 1 bis 5 als die vorhandenen Daten für die Prädiktor-Variable verwenden und verwenden Sie Nachfrage in den Perioden 2 bis 6 als die vorhandenen Daten für die abhängige Variable. Dann sagen Sie es, diese Beziehung auf die Nachfrage in Periode 6 anzuwenden, um unsere Prognose für Periode 7 zu berechnen. Sie können in Abbildung 3B sehen, unsere Formel in Zelle I3 ist FORECAST (H2, C2: H2, B2: G2). Und es gibt eine Prognose von 60 Einheiten zurück. Offensichtlich ist dieses Beispiel nicht realistisch, da die Nachfrage viel zu nett ist (kein Rauschen). So sehen wir in Abbildung 3C, wo wir diese gleiche Berechnung auf einige realistische Daten. Ich möchte nur zu wiederholen, dass, während die Forecast-Funktion nützlich ist, ist es nicht ein Prognosesystem. Ich normalerweise lieber ein wenig mehr Kontrolle über genau, wie ich anwenden und erweitern Tendenzen zu meiner Prognose. Darüber hinaus möchten Sie zunächst entfernen Sie alle anderen Elemente Ihrer Nachfrage, die nicht im Zusammenhang mit Ihren Grundbedarf und Trend. Beispielsweise möchten Sie alle Effekte von Saisonalität oder Ereignissen (z. B. Promotions) aus Ihrem Bedarf entfernen, bevor Sie die Forecast-Funktion anwenden. Sie würden dann Ihre Saisonalität Index und alle Event-Indizes auf die Ausgabe der Forecast-Funktion anwenden. Sie können auch mit Ihren Eingaben spielen, um ein bestimmtes gewünschtes Ergebnis zu erhalten. Beispielsweise möchten Sie vielleicht zuerst versuchen, Ihre Bedarfs-Historie (durch einen gleitenden Durchschnitt, einen gewichteten gleitenden Durchschnitt oder eine exponentielle Glättung) zu glätten, und das ist die Vorhersagevariable anstelle der rohen Nachfrage. Weitere Informationen zu Forecasting finden Sie in meinem Buch Inventory Management Explained. Verwenden der Forecast-Funktion in Open Office Calc. Für Benutzer von Openoffice. org Calc. Funktioniert die Forecast-Funktion genauso wie in Excel. Allerdings gibt es einen leichten Unterschied in der Syntax in Calc verwendet. Wo immer Sie ein Komma in einem Argument in einer Excel-Funktion verwenden würden, verwenden Sie stattdessen ein Semikolon in Calc. Also, anstelle der Excel-Formel würden Sie eingeben Zum Artikel-Seite für weitere Artikel von Dave Piasecki. Kopie des Urheberrechts. Inhalt auf InventoryOps ist urheberrechtlich geschützt und steht nicht für die Wiederveröffentlichung zur Verfügung. Dave Piasecki. Ist Eigentümer von Inventory Operations Consulting LLC. Ein Beratungsunternehmen, das Dienstleistungen im Zusammenhang mit Bestandsführung, Materialhandling und Lagerbetrieb anbietet. Er hat über 25 Jahre Erfahrung in der Betriebsführung und kann über seine Website (inventoryops) erreicht werden, wo er zusätzliche relevante Informationen unterhält. Mein Unternehmen Inventory Operations Consulting LLC bietet schnelle, erschwingliche, kompetente Unterstützung mit Bestandsführung und Lagerbetrieb. Meine BücherExponential Smoothing erklärt. Kopie des Urheberrechts. Inhalt auf InventoryOps ist urheberrechtlich geschützt und steht nicht für die Wiederveröffentlichung zur Verfügung. Wenn die Menschen zuerst den Begriff Exponential Smoothing begegnen sie denken, dass klingt wie eine Hölle von viel Glättung. Was Glättung ist. Sie beginnen dann eine komplizierte mathematische Berechnung vorstellen, die wahrscheinlich erfordert einen Abschluss in Mathematik zu verstehen, und hoffe, es ist eine eingebaute Excel-Funktion verfügbar, wenn sie es jemals tun müssen. Die Wirklichkeit der exponentiellen Glättung ist weit weniger dramatisch und weit weniger traumatisch. Die Wahrheit ist, ist exponentielle Glättung eine sehr einfache Berechnung, die eine ziemlich einfache Aufgabe erfüllt. Es hat nur einen komplizierten Namen, weil was technisch passiert als Folge dieser einfachen Berechnung ist eigentlich ein wenig kompliziert. Um zu verstehen, exponentielle Glättung, hilft es, mit dem allgemeinen Konzept der Glättung und ein paar andere gängige Methoden, um Glättung zu erreichen beginnen. Was ist Glättung Glättung ist ein sehr häufiger statistischer Prozess. Tatsächlich begegnen wir regelmäßig geglättete Daten in verschiedenen Formen in unserem Alltag. Jedes Mal, wenn Sie einen Durchschnitt verwenden, um etwas zu beschreiben, verwenden Sie eine geglättete Zahl. Wenn Sie darüber nachdenken, warum Sie einen Durchschnitt verwenden, um etwas zu beschreiben, werden Sie schnell verstehen, das Konzept der Glättung. So erlebten wir zum Beispiel den wärmsten Winter. Wie können wir das quantifizieren? Nun beginnen wir mit Datensätzen der täglichen hohen und niedrigen Temperaturen für den Zeitraum, den wir Winter für jedes Jahr in der aufgezeichneten Geschichte nennen. Aber das lässt uns mit einer Menge von Zahlen, die um einiges herumspringen (es ist nicht wie jeden Tag dieser Winter war wärmer als die entsprechenden Tage aus allen früheren Jahren). Wir brauchen eine Zahl, die alle diese Sprünge aus den Daten entfernt, so dass wir besser vergleichen können einen Winter zum nächsten. Das Entfernen der Sprünge in den Daten heißt Glättung, und in diesem Fall können wir einfach einen einfachen Durchschnitt verwenden, um die Glättung zu erreichen. In der Bedarfsprognose verwenden wir die Glättung, um zufällige Variation (Lärm) aus unserer historischen Nachfrage zu entfernen. Dies ermöglicht es uns, die Bedarfsmuster (vor allem die Trend - und Saisonalität) und die Nachfrage, die zur Abschätzung der zukünftigen Nachfrage genutzt werden können, besser zu identifizieren. Der Lärm in der Nachfrage ist das gleiche Konzept wie das tägliche Springen der Temperaturdaten. Nicht überraschend, die häufigste Art und Weise Menschen entfernen Rauschen aus der Nachfrage Geschichte ist es, einen einfachen Durchschnitt verwenden oder genauer, ein gleitender Durchschnitt. Ein gleitender Durchschnitt verwendet nur eine vordefinierte Anzahl von Perioden, um den Durchschnitt zu berechnen, und diese Perioden bewegen sich mit der Zeit. Zum Beispiel, wenn Im mit einem 4-Monats-gleitenden Durchschnitt, und heute ist der 1. Mai, Im mit einem Durchschnitt der Nachfrage, die im Januar, Februar, März und April aufgetreten. Am 1. Juni werde ich die Nachfrage von Februar, März, April und Mai nutzen. Gewichteter gleitender Durchschnitt. Wenn wir einen Durchschnitt verwenden, wenden wir die gleiche Wichtigkeit (Gewicht) auf jeden Wert im Datensatz an. Im gleitenden 4-Monatsdurchschnitt stellte jeder Monat 25 des gleitenden Durchschnitts dar. Bei der Verwendung der Nachfragegeschichte, um die zukünftige Nachfrage (und insbesondere die zukünftige Entwicklung) zu prognostizieren, ist es logisch, zu der Schlussfolgerung zu kommen, dass die jüngere Geschichte eine größere Auswirkung auf Ihre Prognose haben möchte. Wir können unsere gleitende durchschnittliche Berechnung anpassen, um verschiedene Gewichte auf jede Periode anzuwenden, um die gewünschten Ergebnisse zu erzielen. Wir geben diese Gewichte als Prozentsätze an, und die Summe aller Gewichte für alle Perioden muss zu 100 addieren. Wenn wir also entscheiden, dass wir 35 als Gewicht für die nächste Periode in unserem 4-monatigen gewichteten gleitenden Durchschnitt anwenden wollen, können wir Subtrahieren 35 von 100 zu finden, wir haben 65 übrig geblieben, um über die anderen 3 Perioden zu teilen. Zum Beispiel können wir am Ende mit einer Gewichtung von 15, 20, 30 und 35 für die 4 Monate (15 20 30 35 100). Exponentielle Glättung. Wenn wir auf das Konzept der Anwendung eines Gewichtes auf die jüngste Periode (wie z. B. 35 im vorigen Beispiel) und das Verbreiten des Restgewichts (berechnet durch Subtrahieren des letzten Periodengewichts von 35 von 100 auf 65) zurückgehen, haben wir Die Grundbausteine für unsere exponentielle Glättungsberechnung. Der Steuereingang der Exponentialglättungsberechnung ist als Glättungsfaktor (auch Glättungskonstante genannt) bekannt. Es handelt sich im Wesentlichen um die Gewichtung für die jüngsten Zeiträume Nachfrage. Wenn wir also 35 als Gewichtung für die letzte Periode in der gewichteten gleitenden Durchschnittsberechnung verwendeten, konnten wir auch 35 als Glättungsfaktor in unserer exponentiellen Glättungsberechnung verwenden, um einen ähnlichen Effekt zu erhalten. Der Unterschied zu der exponentiellen Glättungsberechnung ist, dass anstelle von uns auch herauszufinden, wie viel Gewicht auf jede vorhergehende Periode anzuwenden ist, der Glättungsfaktor verwendet, um das automatisch zu tun. Also hier kommt der exponentielle Teil. Wenn wir 35 als Glättungsfaktor verwenden, beträgt die Gewichtung der letzten Periodennachfrage 35. Die Gewichtung der nächsten letzten Periodennachfrage (der Zeitraum vor dem jüngsten) beträgt 65 von 35 (65 ergibt sich aus der Subtraktion von 35 von 100). Dies entspricht 22,75 Gewichtung für diesen Zeitraum, wenn Sie die Mathematik. Die nächste Nachfrage nach der letzten Zeit wird 65 von 65 von 35 sein, was 14,79 entspricht. Der Zeitraum davor wird gewichtet mit 65 von 65 von 65 von 35, was 9,61 entspricht, und so weiter. Und dies geht zurück durch alle Ihre früheren Perioden den ganzen Weg zurück zum Anfang der Zeit (oder der Punkt, an dem Sie begonnen haben, exponentielle Glättung für das jeweilige Element). Youre wahrscheinlich denken, dass aussehen wie eine ganze Menge Mathe. Aber die Schönheit der exponentiellen Glättung Berechnung ist, dass, anstatt zu jeder vorherigen Periode neu berechnen müssen, jedes Mal, wenn Sie eine neue Perioden Nachfrage erhalten, verwenden Sie einfach die Ausgabe der exponentiellen Glättung Berechnung aus der vorherigen Periode, um alle vorherigen Perioden zu repräsentieren. Sind Sie noch verwirrt Dies wird mehr Sinn machen, wenn wir die tatsächliche Berechnung betrachten Normalerweise beziehen wir uns auf die Ausgabe der exponentiellen Glättung Berechnung als die nächste Periode Prognose. In Wirklichkeit braucht die endgültige Prognose etwas mehr Arbeit, aber für die Zwecke dieser spezifischen Berechnung werden wir sie als die Prognose bezeichnen. Die exponentielle Glättungsberechnung ist wie folgt: Die letzte Periodenforderung multipliziert mit dem Glättungsfaktor. PLUS Die Prognose der letzten Perioden multipliziert mit (minus Glättungsfaktor). D die letzten Perioden S den Glättungsfaktor, der in dezimaler Form dargestellt ist (also 35 als 0,35 dargestellt werden). F die letzten Periodenprognosen (die Ausgabe der Glättungsberechnung aus der vorherigen Periode). OR (unter Annahme eines Glättungsfaktors von 0,35) (D 0,35) (F 0,65) Es wird nicht viel einfacher als das. Wie Sie sehen können, benötigen wir für die Dateneingaben hier nur die jüngsten Zeiträume und die letzten Prognosezeiträume. Wir wenden den Glättungsfaktor (Gewichtung) auf die letzten Perioden an, die in der gewichteten gleitenden Durchschnittsberechnung dieselbe Weise erfordern. Anschließend legen wir die verbleibende Gewichtung (1 minus Glättungsfaktor) auf die jeweils aktuellsten Perioden an. Da die Prognose der letzten Perioden auf Basis der vorherigen Periodennachfrage und der vorherigen Periodenprognosen erstellt wurde, die auf der Nachfrage nach dem vorherigen Zeitraum und der Prognose für den Zeitraum vor der Prognose beruhte, der auf der Nachfrage für den Zeitraum zuvor beruhte Dass und die Prognose für den Zeitraum vor, dass auf der Grundlage der Zeitraum vor, dass. Gut, können Sie sehen, wie alle vorherigen Perioden Nachfrage sind in der Berechnung dargestellt, ohne tatsächlich zurück und Neuberechnung alles. Und das ist, was fuhr die anfängliche Popularität der exponentiellen Glättung. Es war nicht, weil es einen besseren Job des Glättens als gewogenen gleitenden Durchschnitt machte, war es, weil es einfacher war, in einem Computerprogramm zu berechnen. Und weil Sie didnt brauchen, um darüber nachzudenken, welche Gewichtung früheren Perioden zu geben oder wie viele vorherige Perioden zu verwenden, wie Sie in gewichteten gleitenden Durchschnitt. Und, weil es klang nur kühler als gewichtet gleitenden Durchschnitt. Tatsächlich könnte man argumentieren, dass der gewichtete gleitende Durchschnitt eine größere Flexibilität bietet, da Sie mehr Kontrolle über die Gewichtung früherer Perioden haben. Die Realität ist entweder von diesen können respektable Ergebnisse liefern, also warum nicht mit einfacher und kühler klingen gehen. Exponentielle Glättung in Excel Lets sehen, wie dies tatsächlich in einer Kalkulationstabelle mit realen Daten aussehen würde. Kopie des Urheberrechts. Inhalt auf InventoryOps ist urheberrechtlich geschützt und steht nicht für die Wiederveröffentlichung zur Verfügung. In Abbildung 1A haben wir eine Excel-Tabelle mit 11 Wochen Nachfrage und eine exponentiell geglättete Prognose aus dieser Nachfrage berechnet. Ive verwendete einen Glättungsfaktor von 25 (0,25 in Zelle C1). Die aktuelle aktive Zelle ist Zelle M4, die die Prognose für Woche 12 enthält. In der Formelleiste sehen Sie die Formel (L3C1) (L4 (1-C1)). Die einzigen direkten Eingaben zu dieser Berechnung sind die vorherigen Periodennachfrage (Zelle L3), die vorherigen Periodenvorhersage (Zelle L4) und der Glättungsfaktor (Zelle C1, dargestellt als absolute Zelle Bezug C1). Wenn wir eine exponentielle Glättungsberechnung starten, müssen wir den Wert für die 1. Prognose manuell stecken. Also in Zelle B4, anstatt eine Formel, haben wir nur in der Nachfrage aus der gleichen Periode wie die Prognose eingegeben. In der Zelle C4 haben wir unsere erste exponentielle Glättungsberechnung (B3C1) (B4 (1-C1)). Wir können dann kopieren Cell C4 und fügen Sie es in den Zellen D4 bis M4, um den Rest unserer prognostizierten Zellen zu füllen. Sie können nun auf eine beliebige Prognosezelle doppelklicken, um zu sehen, dass sie auf der vorherigen Periodenprognosezelle und den vorherigen Periodennachfragezellen basiert. Somit erbt jede nachfolgende exponentielle Glättungsberechnung die Ausgabe der vorherigen exponentiellen Glättungsberechnung. Das ist, wie jede vorherige Periodenanforderung in der letzten Periodenrechnung dargestellt wird, obwohl diese Berechnung nicht direkt auf die vorherigen Perioden bezieht. Wenn Sie Lust bekommen wollen, können Sie Excels Trace Präzedenzfall-Funktion. Klicken Sie dazu auf Cell M4, klicken Sie dann in der Multifunktionsleiste (Excel 2007 oder 2010) auf die Registerkarte Formeln, und klicken Sie dann auf Vorverfolgung verfolgen. Es wird Verbindungslinien auf die erste Ebene der Präzedenzfälle ziehen, aber wenn Sie auf Trace Precedents klicken, zieht es Verbindungslinien zu allen vorherigen Perioden, um Ihnen die vererbten Beziehungen anzuzeigen. Jetzt können Sie sehen, was exponentielle Glättung für uns getan hat. Abbildung 1B zeigt ein Liniendiagramm unserer Nachfrage und Prognose. Sie sehen, wie die exponentiell geglättete Prognose die meiste Zersiedelung (das Springen um) von der wöchentlichen Nachfrage entfernt, aber dennoch gelingt, dem zu folgen, was ein Aufwärtstrend bei der Nachfrage zu sein scheint. Youll auch bemerken, dass die geglättete Vorhersagelinie tendenziell niedriger als die Nachfrage Linie ist. Dies wird als Trendverzögerung bezeichnet und ist ein Nebeneffekt des Glättprozesses. Jedes Mal, wenn Sie Glättung verwenden, wenn ein Trend vorliegt, wird Ihre Prognose hinter dem Trend zurückbleiben. Dies gilt für jede Glättungstechnik. In der Tat, wenn wir diese Tabellenkalkulation fortsetzen und beginnen Eingabe niedrigeren Nachfrage-Nummern (einen Abwärtstrend) würden Sie sehen, die Nachfrage Linie fallen, und die Trendlinie über sie vor dem Beginn der Abwärtstrend folgen. Thats, warum ich zuvor erwähnt, die Ausgabe aus der exponentiellen Glättung Berechnung, die wir eine Prognose nennen, braucht noch etwas mehr Arbeit. Es gibt viel mehr zu Prognosen als nur Glättung der Beulen in der Nachfrage. Wir müssen zusätzliche Anpassungen für Dinge wie Trend lag, Saisonalität, bekannte Ereignisse, die die Nachfrage beeinflussen können, etc. Aber alle, die über den Rahmen dieses Artikels. Sie werden wahrscheinlich auch in Begriffe wie double-exponentielle Glättung und Triple-exponentielle Glättung. Diese Begriffe sind ein wenig irreführend, da Sie nicht re-Glättung der Nachfrage mehrfach (Sie könnten, wenn Sie wollen, aber das ist nicht der Punkt hier). Diese Begriffe repräsentieren die Verwendung einer exponentiellen Glättung für zusätzliche Elemente der Prognose. Also mit einfacher exponentieller Glättung glätten Sie die Grundanforderung, aber mit doppelt exponentieller Glättung glätten Sie die Grundanforderung plus den Trend, und mit dreifach-exponentieller Glättung glätten Sie die Grundanforderung plus den Trend und die Saisonalität. Die andere am häufigsten gestellte Frage über exponentielle Glättung ist, wo bekomme ich meinen Glättungsfaktor Es gibt keine magische Antwort hier, müssen Sie verschiedene Glättungsfaktoren mit Ihren Nachfrage Daten testen, um zu sehen, was Ihnen die besten Ergebnisse zu testen. Es gibt Berechnungen, die den Glättungsfaktor automatisch einstellen (und ändern) können. Diese fallen unter den Begriff adaptive Glättung, aber Sie müssen vorsichtig mit ihnen sein. Es gibt einfach keine perfekte Antwort und Sie sollten nicht blind implementieren keine Berechnung ohne gründliche Prüfung und Entwicklung eines gründlichen Verständnis dessen, was die Berechnung tut. Sie sollten auch What-If-Szenarios ausführen, um zu sehen, wie diese Berechnungen auf Bedarfsänderungen reagieren, die möglicherweise nicht in den Bedarfsdaten vorhanden sind, die Sie für Tests verwenden. Das Datenbeispiel, das ich vorher verwendet habe, ist ein sehr gutes Beispiel für eine Situation, in der Sie wirklich einige andere Szenarien testen müssen. Dieses besondere Datenbeispiel zeigt einen etwas konsequenten Aufwärtstrend. Viele große Unternehmen mit sehr teuren Prognose-Software bekam in großen Schwierigkeiten in der nicht so fernen Vergangenheit, wenn ihre Software-Einstellungen, die für eine wachsende Wirtschaft gezwickt wurden nicht gut reagiert, wenn die Wirtschaft begann stagnieren oder schrumpfen. Dinge wie dieses passieren, wenn Sie nicht verstehen, was Ihre Berechnungen (Software) tatsächlich tun. Wenn sie ihr Prognosesystem verstanden, hätten sie gewußt, daß sie nötig waren, um zu springen und etwas zu ändern, als plötzliche dramatische Veränderungen an ihrem Geschäft auftraten. So dort haben Sie es die Grundlagen der exponentiellen Glättung erklärt. Wollen Sie mehr über die Verwendung exponentieller Glättung in einer aktuellen Prognose wissen, lesen Sie in meinem Buch Inventory Management Explained. Kopie des Urheberrechts. Inhalt auf InventoryOps ist urheberrechtlich geschützt und steht nicht für die Wiederveröffentlichung zur Verfügung. Dave Piasecki. Ist Eigentümer von Inventory Operations Consulting LLC. Ein Beratungsunternehmen, das Dienstleistungen im Zusammenhang mit Bestandsführung, Materialhandling und Lagerbetrieb anbietet. Er hat über 25 Jahre Erfahrung in der Betriebsführung und kann über seine Website (inventoryops) erreicht werden, wo er zusätzliche relevante Informationen unterhält. Mein Geschäft
No comments:
Post a Comment